Section 4.1: Predicting Election Outcomes

Section 4.1.1: Loops in R

```r
values <- c(2, 4, 6)
n <- length(values)  # number of elements in 'values'
results <- rep(NA, n)  # empty container vector for storing the results

## loop counter 'i' will take values on 1, 2, ..., n in that order
for (i in 1:n) {
  ## store the result of multiplication as the ith element of
  ## 'results' vector
  results[i] <- values[i] * 2
  cat(values[i], "times 2 is equal to", results[i], "\n")
}

## 2 times 2 is equal to 4
## 4 times 2 is equal to 8
## 6 times 2 is equal to 12
results
## [1]  4  8 12

## check if the code runs when i = 1
i <- 1
x <- values[i] * 2
cat(values[i], "times 2 is equal to", x, "\n")

## 2 times 2 is equal to 4
```

Section 4.1.2: General Conditional Statements in R

```r
## define the operation to be executed
operation <- "add"
if (operation == "add") {
  cat("I will perform addition 4 + 4\n")
  4 + 4
}

## I will perform addition 4 + 4
## [1] 8

## check if the code runs when operation = "multiply"
if (operation == "multiply") {
  cat("I will perform multiplication 4 * 4\n")
  4 * 4
}
```
```r
## Note that operation is redefined
operation <- "multiply"
if (operation == "add") {
  cat("I will perform addition 4 + 4")
  4 + 4
} else {
  cat("I will perform multiplication 4 * 4")
  4 * 4
}
## I will perform multiplication 4 * 4
## [1] 16
## Note that operation is redefined
operation <- "subtract"
if (operation == "add") {
  cat("I will perform addition 4 + 4\n")
  4 + 4
} else if (operation == "multiply") {
  cat("I will perform multiplication 4 * 4\n")
  4 * 4
} else {
  cat("", operation, " is invalid. Use either `add` or `multiply`.\n", sep = "")
}
## `subtract` is invalid. Use either `add` or `multiply`.
values <- 1:5
n <- length(values)
results <- rep(NA, n)
for (i in 1:n) {
  ## x and r get overwritten in each iteration
  x <- values[i]
  r <- x %% 2  # remainder when divided by 2 to check whether even or odd
  if (r == 0) {  # remainder is zero
    cat(x, "is even and I will perform addition",
        x, "+", x, "\n")
    results[i] <- x + x
  } else {  # remainder is not zero
    cat(x, "is odd and I will perform multiplication",
        x, "\n")
    results[i] <- x * x
  }
}
## 1 is odd and I will perform multiplication 1 * 1
## 2 is even and I will perform addition 2 + 2
## 3 is odd and I will perform multiplication 3 * 3
## 4 is even and I will perform addition 4 + 4
## 5 is odd and I will perform multiplication 5 * 5
results
## [1] 1 4 9 8 25
```
Section 4.1.3: Poll Predictions

```r
## load election results, by state
pres08 <- read.csv("pres08.csv")
## load polling data
polls08 <- read.csv("polls08.csv")
## compute Obama's margin
polls08$margin <- polls08$Obama - polls08$McCain
pres08$margin <- pres08$Obama - pres08$McCain

x <- as.Date("2008-11-04")
y <- as.Date("2008/9/1")
x - y  # number of days between 2008/9/1 and 11/4

## Time difference of 64 days
## convert to a Date object
polls08$middate <- as.Date(polls08$middate)

## computer the number of days to the election day
polls08$DaysToElection <- as.Date("2008-11-04") - polls08$middate
poll.pred <- rep(NA, 51)  # initialize a vector place holder

## extract unique state names which the loop will iterate through
st.names <- unique(polls08$state)

## add state names as labels for easy interpretation later on
names(poll.pred) <- as.character(st.names)

## loop across 50 states plus DC
for (i in 1:51){
    ## subset the ith state
    state.data <- subset(polls08, subset = (state == st.names[i]))
    ## further subset the latest polls within the state
    latest <- subset(state.data, DaysToElection == min(DaysToElection))
    ## compute the mean of latest polls and store it
    poll.pred[i] <- mean(latest$margin)
}

## error of latest polls
errors <- pres08$margin - poll.pred
names(errors) <- st.names  # add state names
mean(errors)  # mean prediction error

## [1] 1.062092
sqrt(mean(errors^2))

## [1] 5.90894

## histogram
hist(errors, freq = FALSE, ylim = c(0, 0.08),
     main = "Poll prediction error",
     xlab = "Error in predicted margin for Obama (percentage points)"
)
## add mean
abline(v = mean(errors), lty = "dashed", col = "red")
```
text(x = -7, y = 0.07, "average error", col = "red")

type = "n" generates "empty" plot
plot(poll.pred, pres08$margin, type = "n", main = "", xlab = "Poll results",
 xlim = c(-40, 90), ylim = c(-40, 90), ylab = "Actual election results")
add state abbreviations
text(x = poll.pred, y = pres08$margin, labels = pres08$state, col = "blue")
lines
abline(a = 0, b = 1, lty = "dashed") # 45 degree line
abline(v = 0) # vertical line at 0
abline(h = 0) # horizontal line at 0
which state polls called wrong?
pres08$state[sign(poll.pred) != sign(pres08$margin)]

[1] IN MO NC
51 Levels: AK AL AR AZ CA CO CT DC DE FL GA HI IA ID IL IN KS KY LA ... WY

what was the actual margin for these states?
pres08$margin[sign(poll.pred) != sign(pres08$margin)]

[1] 1 -1 1
actual results: total number of electoral votes won by Obama
sum(pres08$EV[pres08$margin > 0])

[1] 364
poll prediction
sum(pres08$EV[poll.pred > 0])

[1] 349

load the data
pollsUS08 <- read.csv("pollsUS08.csv")

compute number of days to the election as before
pollsUS08$middate <- as.Date(pollsUS08$middate)
pollsUS08$DaysToElection <- as.Date("2008-11-04") - pollsUS08$middate

empty vectors to store predictions
Obama.pred <- McCain.pred <- rep(NA, 90)

for (i in 1:90) {
 ## take all polls conducted within the past 7 days
 week.data <- subset(pollsUS08, subset = (DaysToElection <= (90 - i + 7)) & (DaysToElection > (90 - i))))
compute support for each candidate using the average
Obama.pred[i] <- mean(week.data$Obama)
McCain.pred[i] <- mean(week.data$McCain)

plot going from 90 days to 1 day before the election
plot(90:1, Obama.pred, type = "b", xlim = c(90, 0), ylim = c(40, 60),
 col = "blue", xlab = "Days to the election",
 ylab = "Support for candidate (percentage points)"
)

actual election results: pch = 19 gives solid circles
points(0, 52.93, pch = 19, col = "blue")
points(0, 45.65, pch = 19, col = "red")

line indicating the election day
abline(v = 0)

labeling candidates
text(80, 48, "Obama", col = "blue")
text(80, 41, "McCain", col = "red")

Section 4.2: Linear Regression

Section 4.2.1: Facial Appearance and Election Outcomes
```r
## load the data
face <- read.csv("face.csv")
## two-party vote share for Democrats and Republicans
face$d.share <- face$d.votes / (face$d.votes + face$r.votes)
face$r.share <- face$r.votes / (face$d.votes + face$r.votes)
face$diff.share <- face$d.share - face$r.share

plot(face$d.comp, face$diff.share, pch = 16,
col = ifelse(face$w.party == "R", "red", "blue"),
xlim = c(0, 1), ylim = c(-1, 1),
    xlab = "Competence scores for Democrats",
ylab = "Democratic margin in vote share",
    main = "Facial competence and vote share")

Section 4.2.2: Correlation and Scatter Plots

cor(face$d.comp, face$diff.share)

## [1] 0.4327743

Section 4.2.3: Least Squares

fit <- lm(diff.share ~ d.comp, data = face) # fit the model
fit

##
## Call:
```
lm(formula = diff.share ~ d.comp, data = face)

Coefficients:
(Intercept) d.comp
-0.3122 0.6604

lm(face$diff.share ~ face$d.comp)

coef(fit) # get estimated coefficients

(Intercept) d.comp
-0.3122259 0.6603815

head(fitted(fit)) # get fitted or predicted values

1 2 3 4 5 6
0.06060411 -0.08643340 0.09217061 0.04539236 0.13698690 -0.10057206

plot(face$d.comp, face$diff.share, xlim = c(0, 1.05), ylim = c(-1,1),
	xlab = "Competence scores for Democrats",
ylab = "Democratic margin in vote share",
main = "Facial competence and vote share")

abline(fit) # add regression line

abline(v = 0, lty = "dashed")

epsilon.hat <- resid(fit) # residuals

sqrt(mean(epsilon.hat^2)) # RMSE

[1] 0.2642361
Section 4.2.4: Regression Towards the Mean

Section 4.2.5: Merging Data Sets in R

```r
pres12 <- read.csv("pres12.csv")  # load 2012 data
## quick look at two data sets
head(pres08)

## state.name state Obama McCain EV margin
## 1 Alabama AL 39 60 9 -21
## 2 Alaska AK 38 59 3 -21
## 3 Arizona AZ 45 54 10 -9
## 4 Arkansas AR 39 59 6 -20
## 5 California CA 61 37 55 24
## 6 Colorado CO 54 45 9 9

head(pres12)

## state Obama Romney EV
## 1 AL 38 61 9
## 2 AK 41 55 3
## 3 AZ 45 54 11
## 4 AR 37 61 6
## 5 CA 60 37 55
## 6 CO 51 46 9

## merge two data frames
pres <- merge(pres08, pres12, by = "state")

## summarize the merged data frame
summary(pres)
```

```r
## state state.name Obama.x McCain EV margin
## AK : 1 Alabama : 1 Min. :33.00 Min. : 7.00
## AL : 1 Alaska : 1 1st Qu.:43.00 1st Qu.:40.00
## AR : 1 Arizona : 1 Median :51.00 Median :47.00
## AZ : 1 Arkansas : 1 Mean :51.37 Mean :47.06
## CA : 1 California: 1 3rd Qu.:57.50 3rd Qu.:56.00
## CO : 1 Colorado : 1 Max. :92.00 Max. :66.00
## (Other):45 (Other) :45

## EV.x margin Obama.y Romney
## Min. : 3.00 Min. : -32.000 Min. : 25.00 Min. : 7.00
## 1st Qu.: 4.50 1st Qu.: -13.000 1st Qu.: 40.50 1st Qu.: 41.00
## Median : 8.00 Median : 4.000 Median : 51.00 Median : 48.00
## Mean :10.55 Mean : 4.314 Mean : 49.06 Mean : 49.04
## 3rd Qu.:11.50 3rd Qu.: 17.500 3rd Qu.: 56.00 3rd Qu.: 58.00
## Max. :55.00 Max. : 85.000 Max. : 91.00 Max. : 73.00

## EV.y
## Min. : 3.00
## 1st Qu.: 4.50
## Median : 8.00
## Mean :10.55
## 3rd Qu.:11.50
## Max. :55.00
```
change the variable name for illustration

```r
names(pres12)[1] <- "state.abb"
```

merging data sets using the variables of different names

```r
pres <- merge(pres08, pres12, by.x = "state", by.y = "state.abb")
summary(pres)
```

<table>
<thead>
<tr>
<th>state</th>
<th>state.name</th>
<th>Obama.x</th>
<th>McCain</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK</td>
<td>Alabama</td>
<td>Min. :33.00</td>
<td>Min. : 7.00</td>
</tr>
<tr>
<td>AL</td>
<td>Alaska</td>
<td>1st Qu.:43.00</td>
<td>1st Qu.:40.00</td>
</tr>
<tr>
<td>AR</td>
<td>Arizona</td>
<td>Median :51.00</td>
<td>Median :47.00</td>
</tr>
<tr>
<td>AZ</td>
<td>Arkansas</td>
<td>Mean :51.37</td>
<td>Mean :47.06</td>
</tr>
<tr>
<td>CA</td>
<td>California</td>
<td>3rd Qu.:57.50</td>
<td>3rd Qu.:56.00</td>
</tr>
<tr>
<td>CO</td>
<td>Colorado</td>
<td>Max. :92.00</td>
<td>Max. :66.00</td>
</tr>
<tr>
<td>(Other)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EV.x</th>
<th>margin</th>
<th>Obama.y</th>
<th>Romney</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. : 3.00</td>
<td>Min. :32.000</td>
<td>Min. :25.00</td>
<td>Min. : 7.00</td>
</tr>
<tr>
<td>1st Qu.: 4.50</td>
<td>1st Qu.:13.000</td>
<td>1st Qu.:40.50</td>
<td>1st Qu.:41.00</td>
</tr>
<tr>
<td>Median : 8.00</td>
<td>Median : 4.000</td>
<td>Median :51.00</td>
<td>Median :48.00</td>
</tr>
<tr>
<td>Mean :10.55</td>
<td>Mean : 4.314</td>
<td>Mean :49.06</td>
<td>Mean :49.04</td>
</tr>
<tr>
<td>3rd Qu.:11.50</td>
<td>3rd Qu.:17.500</td>
<td>3rd Qu.:56.00</td>
<td>3rd Qu.:58.00</td>
</tr>
<tr>
<td>Max. :55.00</td>
<td>Max. :85.000</td>
<td>Max. :91.00</td>
<td>Max. :73.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EV.y</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. : 3.00</td>
<td></td>
</tr>
<tr>
<td>1st Qu.: 4.50</td>
<td></td>
</tr>
<tr>
<td>Median : 8.00</td>
<td></td>
</tr>
<tr>
<td>Mean :10.55</td>
<td></td>
</tr>
<tr>
<td>3rd Qu.:11.50</td>
<td></td>
</tr>
<tr>
<td>Max. :55.00</td>
<td></td>
</tr>
</tbody>
</table>

cbinding two data frames

```r
pres1 <- cbind(pres08, pres12)
```

this shows all variables are kept

```r
summary(pres1)
```

<table>
<thead>
<tr>
<th>state</th>
<th>Obama</th>
<th>McCain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>1</td>
<td>AK</td>
</tr>
<tr>
<td>Alaska</td>
<td>1</td>
<td>AL</td>
</tr>
<tr>
<td>Arizona</td>
<td>1</td>
<td>AR</td>
</tr>
<tr>
<td>Arkansas</td>
<td>1</td>
<td>AZ</td>
</tr>
<tr>
<td>California</td>
<td>1</td>
<td>CA</td>
</tr>
<tr>
<td>Colorado</td>
<td>1</td>
<td>CO</td>
</tr>
<tr>
<td>(Other)</td>
<td>:45</td>
<td>(Other):45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EV</th>
<th>margin</th>
<th>state.abb</th>
<th>Obama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. : 3.00</td>
<td>Min. :32.000</td>
<td>AK</td>
<td>1</td>
</tr>
<tr>
<td>1st Qu.: 4.50</td>
<td>1st Qu.:13.000</td>
<td>AL</td>
<td>1</td>
</tr>
<tr>
<td>Median : 8.00</td>
<td>Median : 4.000</td>
<td>AR</td>
<td>1</td>
</tr>
<tr>
<td>Mean :10.55</td>
<td>Mean : 4.314</td>
<td>AZ</td>
<td>1</td>
</tr>
<tr>
<td>3rd Qu.:11.50</td>
<td>3rd Qu.:17.500</td>
<td>CA</td>
<td>1</td>
</tr>
<tr>
<td>Max. :55.00</td>
<td>Max. :85.000</td>
<td>CO</td>
<td>1</td>
</tr>
<tr>
<td>(Other):45</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Romney EV
Min. :7.00 Min. :3.00
1st Qu.:41.00 1st Qu.: 4.50
Median :48.00 Median : 8.00
Mean :49.04 Mean :10.55
3rd Qu.:58.00 3rd Qu.:11.50
Max. :73.00 Max. :55.00

DC and DE are flipped in this alternative approach

```r
pres1[8:9,]

## state.name state Obama McCain EV margin state.abb Obama Romney EV
## 8 D.C. DC 92 7 3 85 DE 59 40 3
## 9 Delaware DE 62 37 3 25 DC 91 7 3

## merge() does not have this problem

pres[8:9,]

## state state.name Obama.x McCain EV.x margin Obama.y Romney EV.y
## 8 DC D.C. 92 7 3 85 91 7 3
## 9 DE Delaware 62 37 3 25 59 40 3

pres$Obama2008.z <- scale(pres$Obama.x)
pres$Obama2012.z <- scale(pres$Obama.y)

## intercept is estimated essentially zero
fit1 <- lm(Obama2012.z ~ Obama2008.z, data = pres)
fit1

## Call:
## lm(formula = Obama2012.z ~ Obama2008.z, data = pres)
## ## Coefficients:
## (Intercept) Obama2008.z
## -3.521e-17 9.834e-01

## regression without an intercept; estimated slope is identical
fit1 <- lm(Obama2012.z ~ -1 + Obama2008.z, data = pres)
fit1

## Call:
## lm(formula = Obama2012.z ~ -1 + Obama2008.z, data = pres)
## ## Coefficients:
## Obama2008.z
## 0.9834

plot(pres$Obama2008.z, pres$Obama2012.z, xlim = c(-4, 4), ylim = c(-4, 4),
     xlab = "Obama's standardized vote share in 2008",
     ylab = "Obama's standardized vote share in 2012")
abline(fit1) # draw a regression line
Section 4.2.6: Model Fit

```r
florida <- read.csv("florida.csv")

regress Buchanan's 2000 votes on Perot's 1996 votes
fit2 <- lm(Buchanan00 ~ Perot96, data = florida)
fit2
```

## Coefficients:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.34575</td>
</tr>
<tr>
<td>Perot96</td>
<td>0.03592</td>
</tr>
</tbody>
</table>

```r
compute TSS (total sum of squares) and SSR (sum of squared residuals)
TSS2 <- sum((florida$Buchanan00 - mean(florida$Buchanan00))^2)
```
SSR2 <- sum(resid(fit2)^2)

## Coefficient of determination
(TSS2 - SSR2) / TSS2

## [1] 0.5130333

R2 <- function(fit) {
    resid <- resid(fit) # residuals
    y <- fitted(fit) + resid # outcome variable
    TSS <- sum((y - mean(y))^2)
    SSR <- sum(resid^2)
    R2 <- (TSS - SSR) / TSS
    return(R2)
}

R2(fit2)

## [1] 0.5130333

## built-in R function
summary(fit2)$r.squared

## [1] 0.5130333

R2(fit1)

## [1] 0.9671579

plot(fitted(fit2), resid(fit2), xlim = c(0, 1500), ylim = c(-750, 2500),
     xlab = "Fitted values", ylab = "Residuals")
abline(h = 0)

florida$county[resid(fit2) == max(resid(fit2))]

## [1] PalmBeach
## 67 Levels: Alachua Baker Bay Bradford Brevard Broward ... Washington

## data without Palm Beach

```r
florida.pb <- subset(florida, subset = (county != "PalmBeach"))
```

```r
fit3 <- lm(Buchanan00 ~ Perot96, data = florida.pb)
fit3
```

```r
Call:
lm(formula = Buchanan00 ~ Perot96, data = florida.pb)
##
Coefficients:
(Intercept) Perot96
45.84193 0.02435
##
R^2 or coefficient of determination
R2(fit3)
[1] 0.8511675
```

## residual plot

```r
plot(fitted(fit3), resid(fit3), xlim = c(0, 1500), ylim = c(-750, 2500),
 xlab = "Fitted values", ylab = "Residuals",
 main = "Residual plot without Palm Beach")
abline(h = 0) # horizontal line at 0
```

![Residual plot without Palm Beach](image)

```r
plot(florida$Perot96, florida$Buchanan00, xlab = "Perot's votes in 1996",
 ylab = "Buchanan's votes in 2000")
abline(fit2, lty = "dashed") # regression with Palm Beach
abline(fit3) # regression without Palm Beach
text(30000, 3250, "Palm Beach")
```
Section 4.3: Regression and Causation

Section 4.3.1: Randomized Experiments

```r
women <- read.csv("women.csv")

proportion of female politicians in reserved GP vs. unreserved GP
mean(women$female[women$reserved == 1])
[1] 1
mean(women$female[women$reserved == 0])
[1] 0.07476636

drinking-water facilities
mean(women$water[women$reserved == 1]) - mean(women$water[women$reserved == 0])
[1] 9.252423

irrigation facilities
mean(women$irrigation[women$reserved == 1]) - mean(women$irrigation[women$reserved == 0])
[1] -0.3693319

lm(water ~ reserved, data = women)
```
## Call:
## `lm(formula = water ~ reserved, data = women)`

## Coefficients:
## (Intercept) reserved
## 14.738 9.252

## Call:
## `lm(formula = irrigation ~ reserved, data = women)`

## Coefficients:
## (Intercept) reserved
## 3.3879 -0.3693

### Section 4.3.2: Regression with Multiple Predictors

```r
social <- read.csv("social.csv")
levels(social$messages) # base level is 'Civic'
```

```r
[1] "Civic Duty" "Control" "Hawthorne" "Neighbors"
```

```r
fit <- lm(primary2008 ~ messages, data = social)
fit
```

```r
Call:
`lm(formula = primary2008 ~ messages, data = social)`

Coefficients:
(Intercept) messagesControl messagesHawthorne
0.314538 -0.017899 0.007837
messagesNeighbors
0.063411
```

```r
create indicator variables
social$Control <- ifelse(social$messages == "Control", 1, 0)
social$Hawthorne <- ifelse(social$messages == "Hawthorne", 1, 0)
social$Neighbors <- ifelse(social$messages == "Neighbors", 1, 0)
fit the same regression as above by directly using indicator variables
lm(primary2008 ~ Control + Hawthorne + Neighbors, data = social)
```

```r
create a data frame with unique values of 'messages'
unique.messages <- data.frame(messages = unique(social$messages))
unique.messages
```

```r
messages
1 Civic Duty
2 Hawthorne
3 Control
4 Neighbors
```
## make prediction for each observation from this new data frame

```r
predict(fit, newdata = unique.messages)
```

```
 1 2 3 4
0.3145377 0.3223746 0.2966383 0.3779482
```

## sample average

```r
tapply(social$primary2008, social$messages, mean)
```

```
Civic Duty Control Hawthorne Neighbors
0.3145377 0.2966383 0.3223746 0.3779482
```

## linear regression without intercept

```r
fit.noint <- lm(primary2008 ~ -1 + messages, data = social)
```

```
Call:
lm(formula = primary2008 ~ -1 + messages, data = social)

Coefficients:
messagesCivic Duty messagesControl messagesHawthorne
0.3145 0.2966 0.3224
messagesNeighbors
0.3779
```

## estimated average effect of 'Neighbors' condition

```r
coefficients(fit)["messagesNeighbors"] - coefficients(fit)["messagesControl"]
```

```
messagesNeighbors
0.08130991
```

## difference in means

```r
mean(social$primary2008[social$messages == "Neighbors"]) -
mean(social$primary2008[social$messages == "Control"])
```

```
[1] 0.08130991
```

## adjusted Rsquare

```r
adjR2 <- function(fit) {
 resid <- resid(fit) # residuals
 y <- fitted(fit) + resid # outcome
 n <- length(y)
 TSS.adj <- sum((y - mean(y))^2) / (n - 1)
 SSR.adj <- sum(resid^2) / (n - length(coef(fit)))
 R2.adj <- 1 - SSR.adj / TSS.adj
 return(R2.adj)
}
adjR2(fit)
```

```
[1] 0.003272788
```

## adjusted Rsquare calculation

```r
R2(fit) # unadjusted Rsquare calculation
```

```
[1] 0.003282564
```

```r
summary(fit)$adj.r.squared
```

```
[1] 0.003272788
```
Section 4.3.3: Heterogenous Treatment Effects

```r
average treatment effect (ate) among those who voted in 2004 primary
social.voter <- subset(social, primary2004 == 1)
ate.voter <-
 mean(social.voter$primary2008[social.voter$messages == "Neighbors"])
 -
 mean(social.voter$primary2008[social.voter$messages == "Control"])
ate.voter
[1] 0.09652525

average effect among those who did not vote
social.nonvoter <- subset(social, primary2004 == 0)
ate.nonvoter <-
 mean(social.nonvoter$primary2008[social.nonvoter$messages == "Neighbors"])
 -
 mean(social.nonvoter$primary2008[social.nonvoter$messages == "Control"])
ate.nonvoter
[1] 0.06929617

difference
ate.voter - ate.nonvoter
[1] 0.02722908

subset neighbors and control groups
social.neighbor <- subset(social, (messages == "Control") |
 (messages == "Neighbors"))

standard way to generate main and interaction effects
fit.int <- lm(primary2008 ~ primary2004 + messages + primary2004:messages,
 data = social.neighbor)
fit.int

Call:
lm(formula = primary2008 ~ primary2004 + messages + primary2004:messages,
data = social.neighbor)
##
Coefficients:
(Intercept) primary2004
0.23711 0.14870
messagesNeighbors primary2004:messagesNeighbors
0.06930 0.02723

lm(primary2008 ~ primary2004 * messages, data = social.neighbor)

social.neighbor$age <- 2008 - social.neighbor$yearofbirth
summary(social.neighbor$age)

Min. 1st Qu. Median Mean 3rd Qu. Max.
22.00 43.00 52.00 51.82 61.00 108.00

fit.age <- lm(primary2008 ~ age * messages, data = social.neighbor)
fit.age
```
## Call:
lm(formula = primary2008 ~ age * messages, data = social.neighbor)

## Coefficients:

<table>
<thead>
<tr>
<th>(Intercept)</th>
<th>age</th>
<th>messagesNeighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0894768</td>
<td>0.0039982</td>
<td>0.0485728</td>
</tr>
</tbody>
</table>

## age:messagesNeighbors
0.0006283

## age = 25, 45, 65, 85 in Neighbors group
age.neighbor <- data.frame(age = seq(from = 25, to = 85, by = 20), messages = "Neighbors")

## age = 25, 45, 65, 85 in Control group
age.control <- data.frame(age = seq(from = 25, to = 85, by = 20), messages = "Control")

## average treatment effect for age = 25, 45, 65, 85
ate.age <- predict(fit.age, newdata = age.neighbor) - predict(fit.age, newdata = age.control)

ate.age

## 1 2 3 4
## 0.06428051 0.07684667 0.08941283 0.10197899

## predicted turnout rate under the \"Neighbors\" treatment condition
fit.age2 <- lm(primary2008 ~ age + I(age^2) + messages + age:messages + I(age^2):messages, data = social.neighbor)

## predicted turnout rate under the control condition
fit.age2

## predicted turnout rate under the \"Control\" treatment condition
yC.hat <- predict(fit.age2, newdata = data.frame(age = 25:85, messages = "Control"))

## plotting the predicted turnout rate under each condition
plot(x = 25:85, y = yT.hat, type = "l", xlim = c(20, 90), ylim = c(0, 0.5), xlab = "Age", ylab = "Predicted turnout rate")
```r
lines(x = 25:85, y = yC.hat, lty = "dashed")
text(40, 0.45, "Neighbors condition")
text(45, 0.15, "Control condition")
```
## load the data and subset them into two parties
MPs <- read.csv("MPs.csv")
MPs.labour <- subset(MPs, subset = (party == "labour"))
MPs.tory <- subset(MPs, subset = (party == "tory"))

## two regressions for Labour: negative and positive margin
labour.fit1 <- lm(ln.net ~ margin, 
                   data = MPs.labour[MPs.labour$margin < 0, ])
labour.fit2 <- lm(ln.net ~ margin, 
                   data = MPs.labour[MPs.labour$margin > 0, ])

## two regressions for Tory: negative and positive margin
tory.fit1 <- lm(ln.net ~ margin, data = MPs.tory[MPs.tory$margin < 0, ])
tory.fit2 <- lm(ln.net ~ margin, data = MPs.tory[MPs.tory$margin > 0, ])

## Labour: range of predictions
y1l.range <- c(min(MPs.labour$margin), 0) # min to 0
y2l.range <- c(0, max(MPs.labour$margin)) # 0 to max

## prediction
y1.labour <- predict(labour.fit1, newdata = data.frame(margin = y1l.range))
y2.labour <- predict(labour.fit2, newdata = data.frame(margin = y2l.range))

## Tory: range of predictions
y1t.range <- c(min(MPs.tory$margin), 0) # min to 0
y2t.range <- c(0, max(MPs.tory$margin)) # 0 to max

## predict outcome
y1.tory <- predict(tory.fit1, newdata = data.frame(margin = y1t.range))
y2.tory <- predict(tory.fit2, newdata = data.frame(margin = y2t.range))

## scatterplot with regression lines for labour
plot(MPs.labour$margin, MPs.labour$ln.net, 
     main = "Labour", xlab = "Margin of victory", ylab = "log net wealth at death")
abline(v = 0, lty = "dashed")

## add regression lines
lines(y1l.range, y1.labour, col = "red")
lines(y2l.range, y2.labour, col = "red")
## scatterplot with regression lines for tory

```r
plot(MPs.tory$margin, MPs.tory$ln.net, main = "Tory", xlim = c(-0.5, 0.5),
 ylim = c(6, 18), xlab = "Margin of victory",
 ylab = "log net wealth at death")
abline(v = 0, lty = "dashed")
```

## add regression lines

```r
lines(y1t.range, y1.tory, col = "red")
lines(y2t.range, y2.tory, col = "red")
```
## average net wealth for Tory MP
```r
tory.MP <- exp(y2.tory[1])
tory.MP
```
```
1
533813.5
```
## average net wealth for Tory non-MP
```r
tory.nonMP <- exp(y1.tory[2])
tory.nonMP
```
```
2
278762.5
```
## causal effect in pounds
```r
tory.MP - tory.nonMP
```
```
1
255050.9
```
## two regressions for Tory: negative and positive margin
```r
tory.fit3 <- lm(margin.pre ~ margin, data = MPs.tory[MPs.tory$margin < 0,])
tory.fit4 <- lm(margin.pre ~ margin, data = MPs.tory[MPs.tory$margin > 0,])
```
## the difference between two intercepts is the estimated effect
```r
coef(tory.fit4)[1] - coef(tory.fit3)[1]
```
```
(Intercept)
-0.01725578
```

23